Webinar Hypothesis Testing

Math 201 Dr. Steve Armstrong Liberty University sarmstrong9@liberty.edu

What do you think?

- The Framulator car company claims their new 2019 F2000 sedans average 50mpg for its hybrid vehicle fleet
 - Your sample of 100 vehicles gives average of 47
 - Is that enough evidence to discard their claim?
 - Can we believe Framulator or not?

Making & Interpreting Decision

Refer to this table for help in interpreting

Decision	Claim		
	Conclusion about H_{θ}	Conclusion about H ₁	
Reject H ₀ .	There is enough evidence to reject the claim.	We adopt the claim ${\rm H_1}$	
Fail to reject H ₀ .	There is not enough evidence to reject the claim.	There is not enough evidence to support the claim.	

Your Cengage account provides *excellent* videos
Make sure to view them in addition to viewing this presentation

Seeing/hearing two different explanations will

Online Videos

F.Y.I.

- Further your understanding
- Give different viewpoints

Test for the mean

- $H_0: \mu = 35$ $H_1: \mu > 35$
- Which test do we want ?
 - a) Left tailed test
 - b) Right tailed test
 - c) Two tailed test
 - d) Ring tailed test

Hypothesis Test for Proportions

- This is a z-test
- Calculate z with formula
- \hat{p} is the sample statistic, the proportion for the subset of the population
- Requirements
 - $n \cdot p \ge 5$ and $n \cdot q \ge 5$

Hypothesis Test for Variance, Standard Deviation

- Company claims σ < 1.4 min for incoming call to reach correct office
 - Random sample of 25 calls
 - s = 1.1
 - At α = 0.10, is there enough evidence to support company's claim?

Hypotheses

• $H_0: \sigma = 1.4 H_1: \sigma < 1.4$ (claim)

Hypothesis Test for Variance, Standard Deviation

- This is a Chi-Square test
- Calculate with formula $X^2 = \frac{(n-1) \cdot s^2}{\sigma^2}$
- Where
 - σ² = population statistic
 - s² = statistic for subset of population
 - n = size of subset (n 1) = degrees of freedom for use in tables

Hypothesis Test for Variance, Standard Deviation

- Recall: H₀ : σ = 1.4 H₁ : σ < 1.4 (claim)
- We have rejected H₀
- Thus we conclude there is enough evidence
 - At the 10% level of significance
 - To support the claim
 - The standard deviation for time for incoming call is less than 1.4 minutes

Decision	Claim	
	Conclusion about H_{θ}	Conclusion about H_I
Reject H _b .	There is enough evidence to reject the claim.	We adopt the claim \mathbf{H}_{I}
Fail to reject H ₀ .	There is not enough evidence to reject the claim.	There is not enough evidence to support the claim.

Hypothesis Test for Variance, Standard Deviation

- The previous problem dealt with standard deviation ... let's try one for variance ...
- A diet product company claims variance of weight loss of their users = 25.5 (assume normal distribution)
 - Random sample of 13 users
 - Variance for sample = 10.8
 - At α = 0.10, determine if enough evidence to reject company's claim

Hypothesis Test for Variance, Standard Deviation

- Identify hypotheses & claim
 H₀: σ² = 25.5 (claim) H₁: σ² ≠25.5
- Note level of significance, degrees of freedom
 α = 0.10, d.f. = n 1 = 13 1 = 12

Hypothesis Test for Variance, Standard Deviation

- Interpretation
- Recall $H_0: \sigma^2 = 25.5$ (claim) $H_1: \sigma^2 \neq 25.5$
- We have rejected H₀
- We determine there is enough evidence
 - At 10% level of significance
 - To reject company's *claim* (variance of weight losses is 25.5)

What do you think?

- The Framulator car company claims their 2019 F2000 sedans average is at least 50mpg for its hybrid vehicle fleet
- Your sample of 100 vehicles gives average of 47 with sample sd = 13.5
- Let α = 0.01
- H₀ : μ = 50 (Claim)
- H₁: μ < 50

Aids to Calculations

• Excel tools

- z-Test for $\mu\text{, }\sigma$ is known
- t-Test for μ , σ is *not* known
- z-Test for p (proportion)
- X^2 –Test for standard deviation
- X² –Test for variance
- Download these from Dr. Armstrong's Web <u>http://www.biblestudiesbysteve.com/HypothesisTesting/</u>

