Using Normal Probability Distributions

Webinar Slides

Remember when ...

- What did you think when a teacher told said she/he had "graded on the curve"?
- Typical questions from my students
- "Did you curve the test?"
- "Was there mercy and grace?"
- "Did you add some sugar to the scores?
- "What if we all flunked?"

Properties of a Normal Distribution

- Mean, median, and mode are equal.
- Normal curve bell-shaped, symmetric about mean.
- Total area under normal curve is equal to 1.
- Normal curve approaches,
 but never touches, x-axis
- Inflection points at $\pm 1 \sigma$

Standard Normal Curve

Total area under the curve $=1$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Standard Normal Distribution

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Standard Normal Curve

- You can access this program at https://www.geogebra.org/m/B2cLwp5y

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Standard Normal Curve

\qquad

- If you've taken any calculus, what's going on here? What calculus process are we doing to find the area under the curve?

$$
\int_{a}^{b} f(x) d x
$$

Try It Out ...

- Consider this problem

- Find the probability of a score falling between the two given values.

Try It Out

- We know

$$
z=\frac{x-\mu}{\sigma}
$$

- Calculate z-score for 200

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Try It Out

- We know

$$
z=\frac{x-\mu}{\sigma}
$$

- Calculate z-score for 200
- And for 450

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Try It Out ...

- We know

$$
z=\frac{x-\mu}{\sigma}
$$

- z-score for 200
- And for $450 \quad z=-0.333$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Try It Out ...

Try It Out ...

Why the difference

- Why does the app and the tables give different values?

Another Version

- This program is similar ... also available to you
- Does much of the work for you https://www.geogebra.org/m/URLUI9OZ

Use Technology

- Excel can also do this easily
- The probability of a score less than between

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

More Technology

- Another way to do it

- https://www.geogebra.org/m/b6z3MetQ

What About to the Right?

- Given : In a survey of U.S. men, the heights in the 20-29 age group were normally distributed, with a mean of 69.4 inches and a standard deviation of 29 inches. Find the probability that a randomly selected study participant has a height that is more than 72 inches

What About to the Right?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What About to the Right?

- Remember ... total area $=1$
- Calculate left area
- Subtract from 1
- First, determine z-score

$$
z=\frac{x-\mu}{\sigma}
$$

$$
z=\frac{72-69.4}{2.9}=0.8966
$$

What About to the Right?

- Use Tables look up 0.9 (round up)
- Remember, this is the cumulative area to the left

\mathbf{z}	.00
$\mathbf{0 . 0}$.5000
$\mathbf{0 . 1}$.5398
$\mathbf{0 . 2}$.5793
$\mathbf{0 . 3}$.6179
$\mathbf{0 . 4}$.6554
$\mathbf{0 . 5}$.6915
$\mathbf{0 . 6}$.7257
$\mathbf{0 . 7}$.7580
$\mathbf{0 . 8}$	7881
$\mathbf{0 . 9}$.8159
$\mathbf{1 0}$	ont2

- Subtract from 1 to get area to right $1-0.8159=0.1841$

Use Technology

- Use app to determine

- Subtract 1-0.81503=. 18497

Going the Other Way

- What if we were given the probability
- That is the area under the curve (right or left)
- Then asked to find the corresponding z-score

Going the Other Way

\qquad

- We're looking for the z-score for the area to the left (the probability) of .72022
- We could manipulate the area to get the value and then note the z -scere

Going the Other Way

- However ... note that values for probability jump around
- Might not be able to land on exact probability
- Try to find z-score for $p=0.75$

Back to the Tables

- Now look in the body of tables

2	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	5000	5040	5080	5120	5160	5199	5239	5279	5319	5359
0.1	5398	5438	5478	5517	555	Sse6	5636	5675	5714	5753
0.2	5793	5832	5871	5910	18.	5987	6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	2.18	. 6368	. 206	. 6443	. 6480	. 6517
0.4	6554	. 6591	. 6628	.6664	. 6700	. 6736	. 677	6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	7088	7123	* 15	7190	. 7224
0.6	. 7257	7291	. 7324	. 7357	7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	7580	7611	. 7642	. 7673	7704	. 734	. 7764	7794	. 7823	7852
0.8	7881	7910	7939	. 7967	7995	${ }^{8023}$. 8051	8078	8106	8133

- Don't see 0.7500 ?
- Use closest value

Tables

- We see 0.7486 is closest \qquad
- Look at row and column for z-score

z	. 00	. 01	. 02	. 03	. 0	. 05	. 06		08	. 09
0.0	. 5000	5040	5080	5120	5165	5199	5239	3279	5319	5359
0.1	5398	5438	5478	5517	5557	5596	5636	5675	5714	5753
0.2	5793	5832	5871	5910	5948	5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	6554	. 6591	. 6628	. 6664	6700	. 6736	. 6772	. 6808	. 6844	. 6879
0	. 6915	. 6950	. 6985	. 7319	7054	7088	7123	7157	7190	. 7224
	. 7257	. 7291	. 7324	. 7357	7389	. 7422	.745	7486	7517	. 7549
0.2	7580	. 7611	. 7642	. 7673	.704	7734	7704	2304	7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	7995	8023	. 8051	8078.	8106	. 8133
2.20	-8152	Menk	Sa2	[2388	20at	8288	mand	2332	\$26	dad

- Z-score we use is $z=0.67$

Find Z-Score with Excel

- Excel has a function which will find z-score value exactly

- Function is =NORM.S.INV(probability value)

Found the z... now find x

- From probability, we found z
- Use z to solve for x
- Also need mean and standard deviation

$$
\begin{aligned}
z & =\frac{x-\mu}{\sigma} \\
z \sigma & =x-\mu \\
\mu+z \sigma & =x \\
x & =\mu+z \sigma
\end{aligned}
$$

Example

Try It Yourself 3
A veterinarian records the weights of dogs treated at a clinic. The weights are normally distributed, with a mean of 52 pounds and a standard deviation of 15 pounds. Find the weights x corresponding to z-scores of $-2.33,3.10$, and 0.58 . Interpret your results.

```
- Mean = 52
\(=\frac{x-\mu}{\sigma}\)
```

- Standard deviation = 15
$z \sigma=x-\mu$
- Now find x for given z -scores $\quad \mu+z \sigma=x$
$x=\mu+z \sigma$

Example

- Mean = 52
- Standard deviation = 15
- Now find x for given z-scores
- $z=-2.33$
- $z=3.1$
$x=\mu+z \sigma$
- $z=.58$

$-52+-2.33 \cdot 15$	17.05
$-52+3.1 \cdot 15$	98.5
$\mathbf{- 5 2 + . 5 8 \cdot 1 5}$	60.7

\qquad

\qquad

Use Technology

- An Excel Spreadsheet to calculate this:

- Use formula $\quad x=\mu+z \sigma$

Given Probability, Find x

- Consider this problem

Try It Yourself 4
A researcher tests the braking distances of several cars. The braking distance from 60 miles per hour to a complete t tgp on dry pavement is measured in feet. The braking distances of a sample of cars are normally distributed, with a mean of 129 feet and a standard deviation of 5.18 feet. What is the longest braking distance one of these cars could have and still be in the bottom 1% ? (Adapted from Consumer Reports)

- Probability < 0.01

First, Find z

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Now we have z, calculate x

Summary

- Given x , mean, sd , find $\mathrm{z} \quad z=\frac{x-\mu}{\sigma}$
- Given z, find probability ... cumulative area under curve
- Use tables
- Use app
- Use Excel

Summary

- Given probability, find z

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary

- Given probability, mean, sd ... find x
- First use probability to determine z
- App or Excel or tables "backwards"
- Then use z, mean, $s d$ to find x

$$
x=\mu+z \sigma
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Using Normal Probability
 Distributions

Webinar Slides

