What Is It ???

Distance $\quad d(P, Q)=\left|x_{P}-x_{Q}\right|=\sqrt{\left(x_{P}-x_{Q}\right)^{2}} \quad \sqrt{\left(x_{P}-x_{Q}\right)^{2}+\left(y_{P}-y_{Q}\right)^{2}}$

Formula for measuring \Leftrightarrow metric
Axioms for metric space

- $d(P, Q) \geq 0 \quad d(P, Q)=0 \Leftrightarrow P=Q$
- $d(P, Q)=d(Q, P)$
- $d(P, Q)+d(Q, R) \geq d(P, R)$

Euclidian Distance Formula $d(P, Q)=\sqrt{\left(x_{P}-x_{Q}\right)^{2}+\left(y_{P}-y_{Q}\right)^{2}}$

- Does it satisfy all three axioms?

Consider this formula

$$
d_{T}(P, Q)=\left|x_{P}-x_{Q}\right|+\left|y_{P}-y_{Q}\right|
$$

- Does it satisfy all three axioms?
- We call this formula the "taxicab" distance formula

Assumptions

- Model \qquad geometry
- Streets "nice"
- No width streets
- Buildings "point mass"

Application of Taxicab Geometry
Accident at (-1,4).
Police Car C at $(2,1)$.
Police Car D at (-1,-1).
Which car should be sent?

Circles circle $=\{P: d(P, C)=r, \quad r>0, \quad C$ is fixed $\}$
But ... which metric?

Taxicab distance from P to each point?

Again ... What Is It ???

Taxicab Circle Construction on Nspire

1. Construct Euclidean circle with intersection points vertical, horizontal
2. Construct regular 4 sided polygon with vertices on intersection points
3. Hide the circle, vertical, horizontal lines

Ellipse ellipse $=\left\{P: d\left(P, F_{1}\right)+d\left(P, F_{2}\right)=d, \quad d>0, \quad F_{1}, F_{2}\right.$ fixed $\}$

Special "slider"

- Divide line segment
- Transfer measurement of segments to circle radii
- Note circle intersection

Taxicab Ellipse

- Same slider
- Note "circle" intersections
- Two possibilities

Point to Line Distance

- Shortest distance always on a perpendicular
- Also radius of circle tangent to the line

Taxicab Distance - Point to Line (or line to point) Apply to taxicab circle

- When slope of line - $1<\mathrm{m}<1$?
- When slope, $m=1$?
- When $|\mathrm{m}|>1$?
- Distance from line to point is not always \perp to line

Parabola

All points equidistant from a fixed point and a fixed line (directrix) $\{P: d(P, F)=d(P, k)\}$

Taxicab Parabolas
From the definition
When directrix has slope $m>1$
What does it take to have the "parabola" open downwards?

Locus of Points Equidistant from Two Points Euclidean (perpendicular bisector)

Taxicab "perpendicular bisector"

Application of Taxicab Geometry

School district boundaries
Every student attends closest school.
Schools:
Jefferson at (-6, -1)
Franklin at (-3, -3)
Roosevelt at $(2,1)$
Find "lines" equidistant from each set of schools

Hyperbola
$D(A, C)-D(B, C)=$ Constant $=D(A, B)$
Transfer lengths to circle radii

Taxicab Hyperbola

What is the taxicab length of the sides of this triangle?
How to classify the triangle?

Why?
-

- Better understand Euclidian geometry
- Encourage \qquad -
- Deeper appreciation of structure of math/geometry

Further Investigations
triangles

- Categories of \qquad
- Congruent triangles

